最新鞋材技术信息

白癜风痒是不是快好啦 http://baidianfeng.39.net/a_wh/150516/4624577.html
现代运动鞋科技创新研究综述

现代运动鞋科技创新研究综述

前言

随着社会经济和科技的发展,运动鞋的内涵已不断扩大。运动不仅在竞技场上如火如荼的演绎,更是渗入大众的业余休闲生活中。现代科技作用于体育装备,可以促使运动效果更为显著,运动水平更为优秀。因此,作为最基础的运动装备——运动鞋已实实在在地渗透到每一项体育运动中。广义上的运动鞋(包括专业运动鞋和普通运动鞋)在一些体育和经济发达国家的鞋类消费总量中已占1/3。现代运动鞋已不只是满足耐用舒适的功用,而是从不同运动中寻找运动特点、最佳防震性能和最佳稳定性。其中运动鞋的防震体系又成为众多要素中的焦点问题。

1.运动防震鞋的种类及生物力学分析

1.1材料的力学特性

制鞋材料的力学特性包括弹性、质量和强度等。特别是鞋底的前脚掌部分材料和防震体系材料的弹性对跑、跳等活动将产生很大的影响。在蹬地时相,材料受到冲击载荷的作用,将被压缩。落地缓冲时相,材料又受到冲击而再次压缩。其力学意义有两个方面:

(1)由于鞋底为地面与人体之间的中间体,因而对人体而言,由于鞋底的弹性,地面对人体的冲击力将得到有效的缓冲。可使下肢肌群退让性工作适当减少,以利于后蹬阶段肌群的克制性工作。

(2)从能量转换的角度分析,由于弹性,可储存部分弹性势能,实现能量的二次利用,增加后蹬时的后蹬力。

鞋的质量大小亦对运动能力产生影响,鞋是人体的附加物,鞋的质量越大,在运动过程中消耗的能量累积也越大,在保证足部运动安全保护的前提下,适当减小鞋重是非常有效的。耐克公司为百米女飞人琼斯特别设计的无后跟跑鞋就应证了这一点。

1.2鞋足系统的整和性

鞋足系统的整和性主要指鞋的内部结构、形状与人体足部结构与形状的匹配问题。特别是运动时足部的变形特点以及蹬离和落地方式不同,从而对鞋内不同部分的作用力有显著的运动项目特征和人体个性特征。另外,为了使运动时蹬伸更有力,落地缓冲时足部受压更小,鞋子防震体系设计往往越来越复杂,但这就容易增加增加鞋底的高度,使得鞋足之间的稳定性下降从而使足部受到运动创伤。最后,在运动时鞋内部的温度也影响运动员的舒适感,因为运动时足部释放大量的热和汗,一般性运动时,足每小时产生15毫升左右的汗水,剧烈运动时,足每小时产生30毫升左右的汗水。

如果制鞋材料的透气性不佳,热和汗将无法及时散开而造成水泡、脚藓等疾病。鞋足系统如果在以上提及的任何一处不协调,都将影响运动鞋的舒适感,进而对运动动作结构产生不利影响从而影响成绩。此外就是能量回归,运动中当脚落地冲击地面时,鞋通过受压变形而吸收能量,当人举步离地时鞋又能将能量回输给穿鞋人,此称为“能量回输”,这种能量回输能强化动作,使跑步更快,跳跃更高,人更省力。根据这一理论,要求鞋底具有双重特性——减震和回弹。

1.3运动防震鞋的种类及力学分析

1.3.1美国最大牌运动品——耐克(NIKE)

AIRMAX气垫防震系统是以高压方式将一种特殊气体灌入一个坚韧合成的橡胶层内,气垫中的气体不会因外来冲击力而流失,气垫内不同压力的气室,提供不同MAXAIR,针对不同运动的需要。

ZOOMAIR气垫防震系统是气室内放置弹性功能佳的尼龙立体织物,没有任何接缝,表面光滑。能使脚更贴近地面,以降低重心增加稳定性。超薄外型减少使用中底材料,且使用PHYLON为中底,比使用PU中底轻。气垫表面无接缝,比其他多50%容量,减少空间以换取更大避震效果。

TUBULARAIR气垫防震系统是以八脚章鱼般的管状气室设计使气室互相流通,使脚下作用力更为顺畅,增加落地时的稳定度。SHOX防震是在鞋跟部位装了数个COLUMNS(回力柱),这些回力柱采用的特殊高弹性发泡材料与一级方程式赛车的悬挂系统的概念如出一辙,而且质地轻盈、吸收地面传来的冲击力,受压初期迅速压缩以缓和足部动作,然后迅速恢复到原来高度的过程中再释放出动力,保护腿部各关节并同时降低脑部受到震荡的危害。

1.3.2美国最早的运动鞋生产商——锐步(REEEBOK)

蜂窝式气垫防震系统是由若干个犹如小蜂室的小气囊组成,各自是独立的气室,整块气垫犹如蜂窝,各个气室能承受运动时足部不同的分压,从而分散对足部的压力而得到缓冲。DMX活气垫防震系统是运动鞋前脚掌拥有一个大气室,后脚掌除配有一个大气室外,更附加了后脚跟及侧边气垫,可以防止足部侧翻。其中缓冲式的空气调节阀使空气流通更稳定,保护足弓肌肉。此外,为避免扭伤足踝,舒缓脚后跟的反作用力,避免脊椎、膝盖受到的压迫,鞋后跟采用弧型斜脚设计,使后跟足部先着地,再借由TUP支撑片将稳定性提高,通过活气垫气室中空气的流通,发挥吸震、抗压与舒适的功能。

1.3.3德国体育用品元老——阿迪达斯(ADIDAS)

扭力系统是基于该公司于20世纪80年代提出的“纠正跑步扭偏”的理论。根据该理论,鞋底的前掌和后跟被扭力槽分隔成两个部分,断开的部分称为扭力槽(或扭力条)连接。由于扭力槽的存在,脚可以根据跑步姿势的需要,顺其自然的产生扭动而产生扭力,并在扭力的作用下,有效的控制扭转角度,把扭幅控制在一定的范围内。当跑步离地时,扭力条因脚的摆动而弯曲,产生杠杆力,控制扭转角度,可以在一定程度上加大跑步的能量,又可以补偿因腿的扭摆所带来的危害。当扭力产生时,若鞋底不足以阻止扭力造成的脚踝“外倾”或“内倾”,必然使脚步弯曲,这样就失去了对脚的保护,且能量不能有效的回归腿部,致使能量消耗增大,影响运动水平的发挥。

1.3.4德国体育用品商——彪马(PUMA)

它在足球鞋的制作上独树一帜,年防滑球鞋和保护脚踝的鞋诞生;年首创硫化粘合鞋面和鞋底;70年代,PUMA推出PU多功能钉鞋底及可拆除的防滑片,令足球鞋更富弹性、耐用、轻便;80年代首推可换钉的多功能足球鞋,它的吸震EVA广泛成为业内标准;90年代,PUMA在鞋面加入KELVAR物料,采用金属防滑片,在鞋头及易损耗的鞋钉上加上摩擦系数更大的氧化铝,以便提高足球鞋的耐用性。

1.3.5意大利斐乐(FILA)

FILA拥有3A专利(3ACTION系统),它满足了直向及横向运动的需要。前掌3ACTION小心保护脚趾,同时提供适当柔软度。后跟位置的3ACTION能保护脚跟在着地时受到的冲击。脚跟独立的3ACTION更能包容不同步态带来的震荡,防止脚外倾,降低扭伤。透明封闭式气囊吸收低频率冲击,创新形状有效吸收高频率冲击。气囊+核心能提供持久减震、超级稳定和有效的能量回归。在其他方面FILA还有类似F1赛车式的流线性外体鞋型,以减少空气阻力。压缩橡胶(CMR)中底、脚窝模胶以加强稳定性。

1.3.6日本美津浓(MIZUNO)

MIZUNO采用创新的波浪防震技术,即鞋的前脚掌和后脚跟由一块压缩橡胶(CMR)制成的波浪型,而且中空的鞋掌和鞋底与整个鞋底胶合,从而充分利用压缩橡胶的柔韧性有效缓冲运动中落地时对脚的冲击。

1.3.7美国匡威(CONVERSE)

CONVERSE采用REACT减压避震系统,可有效分散冲击力,仅中底部的油包(内容物是胶固体)就能承受磅的垂直冲击力。此外CONVERSE还独创稀有气体氦气填充的氦气垫。氦气则比空气轻7倍(空气质量是氦气的7倍),因此整个防震系统就减轻了鞋本身的重量负荷,以提高轻便性。

1.3.8其他品牌

茵宝(UMBRO)、乐途(LOTTO)、王子(PRINCE)、威克多(VICTOR)、李宁(LINING)等其他运动厂商在各自擅长的领域,如足球、网球、羽毛球、体操都有各自不同的研究与贡献,但归纳起来不外乎以上所涉及的类型。

除“美津浓”和“匡威”以外,各类防震技术都不同形式的采用了气垫技术防震,就像高级轿车的安全气囊一样,达到不同程度、形式和要求的脚步冲击力缓解、能量回归和足部保护的功能。其中不少运动鞋厂商也采用了“鞋中鞋”技术,即内鞋由柔软舒适、透气性好的面料制成并配有防震体,外鞋由提供保护和耐磨的TPU框架及尼龙网布构成。由于各种气垫鞋在保护足部的同时不可避免地使脚底离地面的高度相对提高,从而使得运动时轻松自如的控制能力相对降低,且脚的稳定性不同程度的降低,“鞋中鞋”技术使脚底离地面的距离比普通鞋减少了25%,有利于脚在运动时更贴近地面,更自如的改变运动方向而不扭伤脚踝。“美津浓”波浪防震和“匡威”油包防震设计避免了气囊式运动鞋容易被尖锐物品刺破而失效的弱点,这两种设计满足了不同运动场地条件下运动的避震保护效用。

2.足部机能解剖特性与鞋足防震系统的结构分析

2.1踝关节(距小腿关节)在冠状轴上除可作背屈、跖屈运动外,当跖屈时,距骨滑车较窄的后部进入宽大的关节囊,故可在垂直方向上可作轻微的侧向(收、展)运动,收展活动角度均离中位20度。跗骨间关节多为微动关节,有距跟关节、距跟舟关节和跟股关节等,其中前二关节在运动时能使足内翻和外翻踝关节,内翻、外翻角度均离中位35度。运动时,内翻通常伴有跖屈,外翻通常伴有背屈,因此,运动中踝关节内翻时,脚底平面与地面的夹角是35度,踝关节外翻时脚底平面与地面的夹角是15度。所以在运动鞋防震体系的设计上必须遵循这一生理解剖特点。足内翻时防震体在受到压力压缩缓冲过程中,鞋内底内侧和外侧受到的冲击不同,因而防震体的变形度大相径庭,鞋内底受到不同压力而变形(内侧高,外侧低)后的倾斜面与地面夹角不得大于35度,否则踝关节必将在运动中因防震体系自身的缺点而损伤韧带。从机能解剖上看,踝关节外侧副韧带较内侧薄弱,足内翻肌群较外翻肌群肥厚,所以在足踝剧烈运动时,容易产生踝关节内翻过度,导致外侧副韧带损伤。同样,在足外翻时,鞋内底受压变形(内侧低,外侧高)后形成的倾斜面的平面与地面夹角不得大于15度,以防止内侧副韧带损伤。

2.2跖趾关节的活动范围在水平脚面的上下45度内,因此,运动鞋前端位于跖趾关节处应注意弯曲度不得大于45度,否则运动时的一些意外伤害中,跖趾关节将很有可能被扭伤。

2.3足弓部位的鞋型设计要符合生物力学原理。足弓部位鞋垫较为高突的设计有利于维持足跟部运动的稳定性,防止跗中部、足跟因形成局部承重点所导致的运动时或运动后的疼痛和跖腱膜炎的发生。表1是10名被试在有足弓垫突起鞋和无足弓垫突起鞋两种状态下的足部平均压力值及占体重百分比的比较。

表1:两种状态下足部平均压力值及占体重的百分比

部位无足弓垫突起鞋(g,%)有足弓垫突起鞋(g,%)前足g,27.7%g,14.6%足弓g,26.8%g,57.1%后足g,45.5%g,28.3%

表1显示:在鞋型设计上有足弓垫突起的状态下,人体前足的平均压力是无足弓垫突起状态下的56.12%,减少了43.88%,体重百分比减少了13.1%;人体足弓部分受的平均压力是无足弓垫突起的.86%,增加了.86%,体重百分比增加了30.3%;人体后足部分受的平均压力是无足弓垫突起的66.22%,减少了33.78%,体重百分比减少了17.2%。所以足弓垫突起的设计,有利于分散人体对前足和后足压力,转移一部分压力至足弓部分。它能减轻前、后足负重,增强足纵弓的支撑力,缓解跖腱膜的牵张力,对于防治足跟部运动创伤而引起后遗症是一种符合生物力学规律的设计方式。

2.4鞋尖适度外翘,以减少鞋尖的着地面积,起到保护足尖的作用。跟部加厚,在鞋楦设计上加大后翘(12mm—15mm)而形成一定的坡度,使运动时身体前倾,有助于减少踵腱受伤,鞋跟部每升高1mm足踵腱松弛率是8%。

2.5人体正常站立时,在足与地面接触的部分,足跟约承受负荷的50%,其余50%由1-5跖骨承受。但由站立转向步行、跑、跳等运动时,足跟提起,身体重心前移,负荷集中于第2跖骨头和第2近节趾骨底上。因此,运动鞋设计必须遵循这一机能解剖学的特点,在防震体系设计上要依照上述特点,在受力点上应设计缓冲效果更佳的弹性或气垫材料,以便缓冲运动中地面对足部这些受力点的压力,保护运动员的足部。

3.实验研究分析

3.1采用中国国家体育科学研究所设备-德国novelpedar足底压力分布测试系统对人体足部三种不同状态下(即裸足、穿着普通防震运动鞋、穿着全掌气垫防震运动鞋)被试连续纵跳过程进行脚底压力、压强的分布解析。

3.2实验研究结果分析

以上三个3D-MVP图(平均足底压力分布三维图)分别显示了人体裸足(图1.1)、穿着运动防震鞋a(图1.2)、穿着运动防震鞋b(图1.3)三种状态下人体进行连续纵跳过程的足底压力分布情况。由以上实验图象1.1可以明显地定性看出人体在纵跳时,裸足状态下在足部各个主要落地点即前脚掌各个跖骨点以及拇趾和第2、3远节趾骨点的平均压力值明显高于足部其他部位,特别拇趾是足部平均压力最高的部位,各点平均压力分布差异性大,这与人体纵跳过程中,落地缓冲力和起跳时地面对足部的反作用力大部分作用于如上所言的作用点,符合自然条件下运动生物力学规律。通过图象1.2的定性分析,可以发现前脚掌各个跖骨点以及拇趾和第2、3远节趾骨点的平均压力值较高于足部其他部位,拇趾还是足部平均压力最高的部位,但是各点平均压力有所减小,分布差异性明显变小。再定性分析图1.3,可以知道足底平均压力分布情况与图1.2有所相似,但是从平均压力分布区域来看,脚弓以及足跟部位压力分布范围更加大,平均压力值更加趋于平衡。

3.3实验研究总结

通过对裸足和不同类型防震运动鞋的状态下人体连续纵跳过程中足底平均压力分布特点的定性分析与比较研究,可以发现防震运动鞋可以有效减低纵跳时外界对人体足部的冲击,对减少对足部各个部分的伤害,降低肌肉、肌腱以及神经、血管的受压力,提高运动竞技能力有着不小的功效。此外,不同类型的防震运动鞋对人体足部的防震功效又有着特殊的差异性。

4.结论

4.1运动鞋的功能要求。

对运动鞋性能要求应着重于两方面:一是满足运动的功能;二是在降低运动员体能消耗的同时对足部骨骼肌腱起保护功能。其中包括运动鞋的:(1)轻质化:确保鞋牢靠的前提下减轻质量,减少能耗。(2)透气:鞋要有良好的透气、透水性。为此一方面从材料着手,另一方面是采用自动进行吸气冲洗的循环底等结构。(3)弹性:鞋需具有良好的弹性,不仅有助于获得良好的弹跳,还可起到节能、蓄能的作用。(4)减震:利用减震系统的减震功能可减少运动对人体的冲击强度。鞋腔和足部形状达到吻合,更可提高减震效果。

4.2运动鞋的制鞋材料要求。

(1)大底:运动鞋大底的功能是保护脚底,同时起到助弹跳、制动、防滑和减震等作用。常用的材料是全胶、全塑、橡胶及PU等。

(2)内底:大多内底材料一直延用以EVA为主体的微孔体。

(3)防震体系:一般材料包括气体(空气、氦气等)、液体、塑胶、全塑、全胶等。

(4)帮衬:主要使用的材料有天然革、棉帆布、尼龙织物、合成革、复合面料等。

4.3运动鞋的弊端

运动鞋和旅游鞋鞋底较平坦,可塑性大,富有弹性,对青少年跑、跳起到一定的缓冲作用,因为相当青少年学生喜欢。但长期穿着的弊端是:由于鞋内温度和湿度的提高,脚部的韧带容易变松拉长,脚掌逐渐变宽,久而久之变成平足。运动鞋的用料大多是橡胶、塑料、海绵、尼龙、帆布等,透气性较差,汗脚长时间在这“封闭”环境下,易引起脚藓、皮炎、湿疹等皮肤病。

运动鞋或是旅游鞋几乎是无跟平底鞋,它不能保证人体重心平均分布在全脚掌,不能使身体肌韧带、骨骼和脊柱保持正常的位置和工作状态,青少年穿着后由于身体重心的改变,脚部作用力出现分配不均,会影响步法,如长期处于这种不良环境下,将影响青少年的身体发育。

VICTOR最新球鞋技术——楔形双密度中底

一双好鞋需要穿着舒适,开发时楦型的选择尤为重要,在研发中对于鞋楦的投入必不可少。一双好鞋的动力、支撑性以及对步伐的操控均来自鞋底,中底更可喻为汽车的底盘与悬吊系统,研发中对于鞋底的投入更是非常重要。

那么首先,我们来介绍年VICTOR研发的最新球鞋鞋底技术——“楔形双密度中底”

细分羽球运动时足部的运动轨迹

打球时脚底持续受到来自地面的冲击,直接以“ENERGYMAX3.0”材料制成的中底将冲击力分散化解,足底在长时间运动后更不容易呈现疲态。并且依靠足跟处的优秀吸震力,避免多余的力道顺足踝向上直至膝盖,对于膝盖的保护功效显著。

上步时足跟外侧首先落地,足迹转换为全掌着地,并立刻由足跟内侧发起向前蹬出。

直接以“ENERGYMAX3.0”材料制成中底后跟,与中底接合,形成为不同材质不同密度的分段结构体。以中底“LightResilientEVA”进行支撑反弹,再凭借“ENERGYMAX3.0”材质的优秀吸震回弹功能在脚力爆发的瞬间对步伐的轨迹进行引导!

楔形角度设计

在足跟按照人体工学特点,按发力部位不同对“双密度后跟中底”依照楔形角度设定进行交叠,成外宽内窄结构。外宽结构在落地时对足跟外侧较集中的冲击力进行吸收,内窄结构加强回弹力,更快发动向前的步伐!

"楔形双密度中底技术"实装第一双鞋款SH-A,VICTOR球员将装备此最新鞋底技术的球鞋在赛场驰骋!

碳纤维/热塑性复合材料成就运动鞋高性能表现

Carbitex的柔性碳纤维/热塑性复合材料板采用了创新性的工程设计,从而消除了运动鞋的设计缺陷。

▲增强高性能运动鞋

华盛顿初创公司Carbitex的碳纤维/热塑性复合材料产品旨在消除鞋类应用中稳定性和柔韧性方面的材料冲突做出的让步。图为Carbitex的DFX产品。

多年来,碳纤维中底板(midsoleplates),铁芯(shanks)和其他组件一直在提高性能并减轻顶级运动鞋的重量。

但是,CarbitexInc.(美国华盛顿州肯尼威克)的创始人兼董事长JunusKhan解释说,即使使用复合材料,制鞋开发商在选择中底板的材料时通常也必须做出妥协:

在足够坚硬的材料之间进行选择。尽管脚可能不灵活,笨重,或者是重量轻且柔软但不能提供足够支撑的材料,但在所需的活动过程中可以支撑脚。无论是选择哪种方法,还是采用介于两者之间的折衷材料,都会使鞋子(以及穿着者)固有地效率低下,Carbitex表示,通过开发柔性碳纤维/热塑性复合材料产品线,已经能够克服这一问题。

但是,Khan指出,他最初并未打算改变制鞋业。大约10多年前,Khan拥有经济学背景,但通过在汽车行业工作而了解了碳纤维复合材料,他考察了行李箱市场,想知道为什么箱包制造商试图用弹道尼龙和其他织物来模仿碳纤维的美学,而不是使用真正的碳纤维。由于找不到一家能生产出适合箱包市场的柔软、柔韧的碳纤维产品的公司,他决定亲自动手制造。自年起,Khan就开始利用业余时间在车库里研究各种碳纤维材料,并于年在美国能源部西北太平洋国家实验室测试了他的第一种材料和工艺。那时,他说:“我有一个可行的概念,并且对材料空间有了更好的了解,”他决定将这个概念转变为一家公司,目标是继续开发并最终销售材料。CarbitexInc.成立于年2月。

AFX和DFX:改造鞋类

▲专注于鞋类

尽管期望能尽快进入其他行业,但到目前为止,Carbitex将其大部分发展重点放在了制鞋业。

在过去的几年中,Carbitex发布了两种新的复合技术,称为AFX和DFX。Khan认为,与“典型复合材料”的刚度由纤维取向和层长度控制的不同,Carbitex碳纤维片材的硬度在整个长度上都是均匀的。

他说,在其他复合材料可能由一种树脂系统和纤维组成的情况下,Carbitex的材料更加复杂,涉及复杂的聚合物片层和织物层,以实现所需的柔韧性。

他说:“我们的AFX材料的非常简单的版本可能将两种不同类型的碳纤维夹在另外两种或三种不同类型的聚合物之间。”“这是一个复杂的分层系统,您必须了解如何将这些层合并在一起以实现[所需]属性。”

通常,制造过程首先将可以用粘合剂或其他织物处理方法处理过的织物和聚合物片层合到面板中。尽管汗表示,Carbitex的大多数产品都包含美国TorayCompositeMaterials公司(美国华盛顿州塔科马市)生产的纤维,并且经常使用Hexcel(美国康涅狄格州斯坦福市)生产的丝束织物,但仍使用来自不同供应商的各种纤维。

聚合物也因应用而异,但通常具有热塑性,以提供柔韧性和可成型性,“尽管有时根据应用的不同,它不是完全热塑性的,”他补充道。

这些面板在热压机中合并在一起;一旦移除,将通过水刀切割并成型单个零件。Khan说,与传统的叠层相比,采用面板制造而不是单个零件叠层可以提高产量。

制造工艺

首先,将特定的机织织物,预浸料和聚合物薄膜层堆叠在一起形成面板。

接下来,将面板在加热压机中固结。

通过喷水从固化的面板上切下特定的组件

Carbitex说,避免单独的零件叠置可以提高生产率。

所得的碳纤维复合材料中底(图中为DFX组件)将组装到最终的鞋类应用中。

但是,除了要兼顾刚性和柔韧性之外,开发鞋类还面临另一个挑战:人的脚只能在一个方向弯曲而不会过度伸展或折断,因此鞋材需要具有在某些方向弯曲的多功能性,而在其他方向则没有弯曲性。

Khan说,Carbitex通过控制层压板的弯曲或弯曲来实现这一目标。Khan说:“通常在复合材料中,“屈曲”一词归因于失败,但我们想出了使纤维屈曲而不断裂的方法。”

他补充说,这项发明最初是偶然产生的,因为一位同事意识到纤维和聚合物层的某种组合导致一种材料仅在一个方向上弯曲。Khan说:“我们意识到这样做必须有某种好处,因此我们开始剥离这些层,了解它是如何发生的,然后了解我们如何有目的地做到这一点。”

屈曲设计

根据脚部的形状限制,AFX材料的设计只能沿一个方向弯曲。

生成的产品称为AFX,其中的“AF”代表“非对称柔性

(AsymmetricallyFlexible)”,表示它在一个方向上弯曲而在另一个方向上完全刚性。根据年的专利申请,Carbitex的AFX产品包括机织织物层,预浸料坯层以及在它们之间的至少一个聚合物层,它们组合成一个组件,然后进行成型和固化。该专利说:“分层结构在第一方向上具有较高的抵抗力,而在相反的第二方向上具有较低的抵抗力。”

“我们的技术可在您想要的方向上实现一定程度的刚度和保护,”Khan补充道。例如,装有AFX碳纤维中底的远足靴,具有保护脚部以防止在不平坦或垂直地形上以错误的方式弯曲所需的支撑力和刚度,但“当您弯曲脚以在平坦的地面上行走时,[靴子就像跑鞋一样灵活。”他说。AFX还比通常用于加固远足靴的木板和橡胶材料轻。

Carbitex的第三种产品称为DFX,它是AFX的衍生产品,代表“动态灵活性(DynamicallyFlexible)”,这意味着鞋子中材料的刚度会随着脚的移动而变化。借助DFX,“您可以拥有一种[鞋子],它在某些角度将具有超强的柔韧性,然后在更大的角度将变得越来越硬或呈指数变硬,”Khan说。“在鞋类中,这与性能直接相关。”根据其年专利申请,DFX至少由三层组成,并固化成一个层压板:粘合剂增强的柔性机织织物层;较硬的机织织物层;至少一层聚合物层。

Khan指出,当运动员在田径场上行走时,跑步鞋或防滑钉可能会柔软而有弹性,然后,一旦跑步者起飞并且脚开始以更大的角度弯曲,则鞋子会变得更硬以支撑运动。“公司不再需要折中并选择特定的中足硬度-我们可以确定给定活动的不同功能,并设计相应的硬度。”

“另一种看待它的方式是,DFX增强了脚的性能,就像肌肉或韧带一样起作用,取决于它们被拉伸的方式而变得灵活或僵硬。AFX材料的行为更像是肘部或脚踝等关节,其设计可以使单向弯曲得非常好。”他补充说。

动态灵活性

在阿迪达斯(Adidas)的XGhosted足球鞋防滑鞋和类似应用中,DFX材料可根据穿着者的运动提供可变的灵活性。

到目前为止,每种材料迭代都是针对特定性能范围和确定的适用于行业的制造集成水平而专门设计的,在此范围内还可以进行自定义,例如特定的刚度或耐用性要求。该公司还向潜在客户提供定制样品。“我们不断收集有关复合材料及其工作方式和原因的数据,并建立了自己的建模系统,可以根据需要快速转换不同的版本。通常,在接到询盘后的一两天内,我们就可以制作定制样品并送货上门了。

野心不止于鞋类

Khan说:“目前,我们的目标是继续在鞋类领域扩大业务,并努力抓住这一机会。”但是,公司的长远目标是发展到其他行业,例如航空航天和医疗应用。

“矫形外科和假肢领域,甚至是机器人领域,对我们来说都是真正重要的行业,既是一个我们的产品可以真正受益的市场,又是一个与鞋类相似的市场,“他说。

他补充说,目前假肢的动态灵活性是通过笨重而昂贵的电子系统和液压执行器来实现的。Khan设想将Carbitex产品用于膝盖或后背支架等应用中,在这种应用中可以对材料进行工程设计,以防止某些运动或过度伸展,同时允许其他运动。

他补充说:“戴上牙套,您通常会固定某人身体的一部分,因为只有一个动作确实对身体有害。关键是要制造一种支撑装置,以限制该运动的一个方向,但使人能够沿其他方向运动。”

为了实现这一目标,Carbitex最近开始与一家专门为儿童制作牙套的公司开发应用程序。Carbitex说,该公司的材料还被用于开发用于徒步旅行者的压缩袖子的碳纤维垫,以及用于连接足球运动员头盔和肩垫的护颈垫,以防止脖子在玩游戏时向后弹开。

在寻求其他应用时,Carbitex希望使用其产品来消除其他行业中的材料冲突做出的让步,就像它不断追求在鞋类中一样。Khan补充说:“说您正在努力寻求使自己更快,更好,更强大的产品听起来很酷,我们正在这样做-但最终,我们一直在追求效率。”

预览时标签不可点收录于话题#个上一篇下一篇


转载请注明:http://www.kyganv.com/zyzz/12451.html

  • 上一篇文章:
  •   
  • 下一篇文章: 没有了